
· 1

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or direct commercial advantage and that copies show this notice
on the first page or initial screen of a display along with the full citation. Copy-
rights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works,
requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1
(212) 869-0481, or permissions@acm.org.

Name: Mark R. Fahey
Address: faheymr@ornl.gov

A Parallel Eigenvalue Routine for Complex

Hessenberg Matrices

Mark R. Fahey

Joint Institute for Computational Sciences

Center for Computational Sciences

Oak Ridge National Laboratory

Oak Ridge, TN 37831-6203

A code for computing the eigenvalues of a complex Hessenberg matrix is presented. This code com-
putes the Schur decomposition of a complex Hessenberg matrix. Together with existing ScaLA-
PACK routines, the eigenvalues of dense complex matrices can be directly computed using a
parallel QR algorithm.

This parallel complex Schur decomposition routine was developed to fill a void in the ScaLA-
PACK library and was based on the parallel real Schur decomposition routine already in ScaLA-
PACK. The real-arithmetic version was appropriately modified to make it work with complex
arithmetic and implement a complex multiple bulge QR algorithm. This also required the devel-
opment of new auxiliary routines that perform essential operations for the complex Schur decom-
position, and that will provide additional linear algebra computation capability to the parallel
numerical library community.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—distributed programming, parallel programming; G.1.3 [Numerical Analysis]: Numerical
Linear Algebra—eigenvalues

General Terms: Parallel programming

Additional Key Words and Phrases: Parallel QR algorithm, Schur decomposition, ScaLAPACK,
complex matrices, eigenvalue

1. INTRODUCTION

A parallel code that computes the Schur decomposition of a complex Hessenberg
matrix is presented. Since it reduces the Hessenberg matrix to triangular form, the
eigenvalues of the Hessenberg matrix are then readily available.

This code was created by converting the ScaLAPACK [Blackford et al. 1997] code
PDLAHQR to a complex implementation. PDLAHQR computes the Schur decomposi-
tion of a real matrix in parallel using a multiple bulge QR algorithm. Therefore,
this implementation, called PZLAHQR, also computes the Schur decomposition of a
complex matrix in parallel using a multiple bulge strategy. Since the output from
PZLAHQR is standard Schur form, PZLAHQR can be used in conjunction with existing
ScaLAPACK routines to compute eigenvalues and eigenvectors of a general com-
plex matrix in parallel. The name of this code and its auxiliary routines follow the
ScaLAPACK convention.

The work by Henry, Watkins, and Dongarra [Henry et al. 1997] is the primary
reference on the parallel nonsymmetric QR algorithm design. Their paper includes
many details that will not be repeated here and should be referenced in addition
to this work.

A Parallel Eigenvalue Routine for Complex Hessenberg Matrices · 3

In Section 2, both the sequential single bulge and and multiple bulge QR al-
gorithms are reviewed. In Section 3, highlights of the parallel nonsymmetric QR
algorithm are presented from [Henry et al. 1997]. The conversion of the real par-
allel nonsymmetric QR algorithm to complex arithmetic is discussed in Section 4.
Numerical accuracy and scalability results for PZLAHQR are presented in Section 5.
Concluding remarks are given in Section 6.

2. SEQUENTIAL QR ALGORITHM REVIEW

The implicit shifted QR algorithm has been a successful serial method for comput-
ing the Schur decomposition

H = QTQH

where H is a Hessenberg matrix, Q is a unitary matrix, and T is an upper triangular
matrix. The initial matrix H is assumed to be Hessenberg for simplicity since the
reduction to Hessenberg form is a well understood problem and has been shown to
parallelize well [Berry et al. 1994; Dongarra and Van de Geijn 1992].

The Schur decomposition is computed by iteratively applying orthogonal similar-
ity transformations to the Hessenberg matrix H until it becomes upper triangular.
This process, known as the QR algorithm, performs QR iterations implicitly by
chasing bulges down the subdiagonals of the upper Hessenberg matrix H [Golub
and Van Loan 1996; Watkins 1991]. Each iteration begins by choosing shifts that
accelerate convergence and using them to form a bulge. The bulge is then chased
down the subdiagonals to complete the iteration.

2.1 Single Bulge

The Francis double implicit shifted QR algorithm has long been the standard serial
version for real matrices. One step of the Francis QR algorithm is presented in
Figure 1.

Francis QR Step

e← eig(H(n − 1 : n,n− 1 : n))
x← (H − e(1)In)(H − e(2)In)In(1 : n, 1)
Let P0 ∈

�
n×n be a Householder matrix

such that P0x is a multiple of In(1 : n, 1)
H ← P0HP0

for i = 1, . . . , n− 2
If i < n− 2

Compute Pi so that PiH has zero
(i + 2, i) and (i + 3, i) entries

If i = n− 2
Compute Pi so that (PiH)n,i = 0

Update H ← PiHiPi

Update Q← QPi

endfor

Fig. 1. Sequential Single Bulge Francis QR Step [Henry et al. 1997]

4 · M. Fahey

The Householder matrices in Figure 1 are unitary transforms of the form:

Pi = I − τvvH (1)

where τ ∈ � and 1 ≤ |τ | ≤ 2 and v ∈ � n [Lehoucq 1994].
The Francis QR step begins each iteration by choosing two shifts and using

them to form a bulge of degree 2. The bulge is then chased from top to bottom to
complete the iteration. The shifts are usually taken to be the eigenvalues of the 2×2
submatrix at the lower right; this is commonly referred to as the Wilkinson shift
strategy. One could also use some larger number, say M , of shifts by computing
the eigenvalues of the lower right hand submatrix or order M . This leads to the
multiple bulge QR algorithm discussed in the next section.

2.2 Multiple Bulge QR Algorithm

To chase multiple bulges simultaneously, the double-shift strategy is inadequate
because the shifts for the next iteration cannot be calculated until the current
bulge has been chased to the bottom of the matrix. A multishift QR algorithm was
proposed in [Bai and Demmel 1989] which had multiple single QR steps carried out
simultaneously chasing one large bulge where the eigenvalues of the lower M × M
submatrix are the shifts. This algorithm was found to have a flaw: it must compute
many iterations before the first batch of eigenvalues is deflated, and the problem
becomes exacerbated with increasing M . Watkins [Watkins 1994] then proposed
chasing many small bulges instead. For example use M shifts to perform a batch of
M/2 double steps, one after the other. In [Watkins and Elsner 1991], it was proved
that this results in quadratic convergence like the double-shift QR algorithm. Each
cycle of computing M shifts and chasing M/2 bulges is referred to as a super-

iteration. One super-iteration of the general sequential multiple bulge algorithm is
presented in Figure 2.

In Figure 2, the i index is similar in function to the i index in the algorithm
shown in Figure 1. Since there are M/2 bulges, some start-up and wrap-up costs
exist (see [Henry et al. 1997] for more details).

3. PARALLEL QR ALGORITHM

A parallel nonsymmetric QR algorithm for real matrices was implemented in the
code PDLAHQR as part of ScaLAPACK. The algorithm used in PDLAHQR is similar
to the LAPACK routine DLAHQR. However, unlike DLAHQR, instead of sending one
double-shift through the largest unreduced submatrix, this algorithm sends multi-
ple double-shifts. This allows all bulges to carry out up-to-date shifts and spaces
them apart so that there can be parallelism across several processor row/columns.
Another critical difference is that this algorithm applies multiple double-shifts in
a block fashion, as opposed to DLAHQR, which applies one double-shift at a time.
Note that the LAPACK code ZHSEQR is a multiple shift, single bulge QR algorithm
implementation.

This is the approach taken in [Henry et al. 1997] where M shifts are obtained
from the lower M ×M submatrix, where M is a fairly large even number (say 40),
and used to form S = M/2 bulges of degree two and chase them one after the other
down the subdiagonal in parallel.

A Parallel Eigenvalue Routine for Complex Hessenberg Matrices · 5

Multiple Bulge QR Super-Iteration

e← eig(H(n −m + 1 : n,n−m + 1 : n))
for k = 0, . . . , n− 6 + 2m

for j = m, m− 2,m− 4, . . . , 2
i = k − 2j + 4
if i < 0 then Pi = I
if i = 0

x← (H − e(j−1)In)(H − e(j)In)In(1 : n, 1)
Let Pi ∈

�
n×n be a Householder matrix

such that Pix is a multiple of In(1 : n, 1)
if 1 ≤ i < n− 2

Compute Pi so that PiH has zero (i + 2, i)
and (i + 3, i) entries

if i = n− 2
Compute Pi so that (PiH)n,i = 0

if i > n− 2 then Pi = I
H ← PiHPi

Q← QPi

endfor

endfor

Fig. 2. Sequential Multiple Bulge QR Super-Iteration [Henry et al. 1997]

Details of this approach are discussed by Henry, Watkins, and Dongarra [Henry
et al. 1997]; their key observations pertaining to parallelization are as follows:

—The most critical difference between serial and parallel implementations of the
QR algorithm is that the number of bulges must be chosen to keep the processors
busy. The bulges must be separated by at least a block, and remain synchronized,
to ensure that each row/column of processors remains busy. Usually the block
size must be large; otherwise there will be too much boundary communication.

—The overall logic can be kept similar to the well-tested QR algorithm. The super-
iteration can be implemented to complete before new shifts are determined and
another super-iteration is begun. Information about the “current” unreduced
submatrix must remain global to all nodes.

—The Householder transforms are of size 3, which means they are specified by
sending 3 data items. The latency associated with sending many such small
messages would be ruinous, so the information from several (e.g., 30) Householder
transformations is bundled in each message.

—If many bulges are being chased simultaneously, there may be several bulges per
row or column of processors. In that case, latency can be reduced further by
combining the information from all bulges in a given row or column into a single
message.

This concludes a brief review of a parallel multiple bulge QR algorithm and the
solver PDLAHQR based on this approach. In what follows, a complex version of the
multiple bulge nonsymmetric QR algorithm is developed.

6 · M. Fahey

4. CONVERSION OF PDLAHQR TO PZLAHQR

This sections describes the changes involved in converting PDLAHQR to a complex
implementation, namely PZLAHQR. Counterparts to the auxiliary codes associated
with PDLAHQR were also converted.

In the following subsections, new auxiliary routines needed in the development
of PZLAHQR are discussed as well as PZLAHQR itself.

Note that the double-shift strategy produces eigenvalues that appear one at a
time or in pairs. For real matrices, it is important that any QR algorithm imple-
mentation couples a complex eigenvalue with its complex conjugate, which is also
an eigenvalue, so that complex arithmetic can be avoided. In fact, most QR algo-
rithm implementations take great care to produce complex conjugate eigenvalues
whose real components are equal and whose imaginary components are equal in
magnitude to full precision. However, for PZLAHQR to be presented later, each pair
of eigenvalues it finds will not necessarily be a complex conjugate pair. Moreover,
even if a complex matrix has complex conjugate eigenvalues, this code does not pair
them up and consequently does not ensure that the real components are identical
or that the imaginary components have the same magnitude.

The double-shift strategy reduces the Hessenberg matrix to quasi-triangular form
with 2 × 2 blocks on the diagonal. These blocks are then further reduced to tri-
angular form. Then, if necessary, the reduction transformation (rotator matrix) is
applied to the appropriate matrix rows and columns.

4.1 2 × 2 Schur Decomposition

Previously, it was noted that the 2 × 2 blocks that are formed along the diagonal
are further reduced to upper triangular form, i.e.,

[

w x
y z

]

=

[

c −s̄
s c̄

][

ŵ x̂
0 ẑ

] [

c̄ s̄
−s c

]

A routine to compute this decomposition was developed and denoted as ZLANV2.
This routine is used by PZLAHQR, discussed below, to apply the rotator matrix (com-
posed of cosine c and sine s values) to the corresponding rows and columns of the
matrix where the reduced 2 × 2 block is located. To be useful in a parallel imple-
mentation, another auxiliary routine was created to apply a rotator to a distributed
matrix, described next.

4.2 Parallel Application of Rotator Matrix

The efficient application of a 2× 2 rotator in parallel to two rows (or columns) of a
distributed matrix requires careful attention. The ScaLAPACK approach involves
a 2-D block-cyclic distribution of the matrix over a 2-D process grid. The rows to
be acted on by the rotator may reside on different process rows as well as being
distributed column-wise. Although each processor will have the rotator matrix,
each processor will not have all the necessary matrix information. To efficiently
address this issue, a work array for every process is required. Each process, if
needed, will receive a copy of the remote information it needs to update its locally
owned row(s). Then each process can apply the rotator to its row(s) and work
array in serial using ZROT. At this point, the matrix rows have been updated and
no further communication is needed. This process has been implemented in the

A Parallel Eigenvalue Routine for Complex Hessenberg Matrices · 7

PBLAS-like routine PZROT.

4.3 Parallel Complex QR Algorithm

With the aforementioned support routines and several auxiliary routines in place,
all that remains is PZLAHQR itself. To implement this, the real code PDLAHQR was
converted to a complex implementation. The two most significant modifications
(beyond those of converting real arithmetic to complex and modify how the code
tests for “small” elements) were as follows:

(1) At the beginning of the QR step, if two consecutive small subdiagonals are
found, update a subdiagonal element by a factor of 1 − τ (see Equation 1.)
This is in comparison to PDLAHQR where the update factor is always −1. This
meant introducing new coupled send and receive BLACS calls so that an up-
to-date copy of τ can be used on the appropriate process.

(2) When 2 × 2 blocks are formed along the diagonal, they are transformed to
standard Schur form, which uses ZLANV2. Then the corresponding rows and
columns must be updated by PZROT.

As in PDLAHQR, PZLAHQR calls its serial counterpart ZLAHQR to compute eigenvalues
of submatrices.

5. NUMERICAL RESULTS

In this section, the accuracy and scalability of PZLAHQR is presented. The numerical
tests were carried out on an SGI Origin 2000, IBM SP2, and IBM Power3 SMP at
the U.S. Army Engineer Research and Development Center (ERDC) Major Shared
Resource Center (MSRC); and an IBM Power4 p690 at Oak Ridge National Labo-
ratory. See Table 1 for more information on each machine.

Table 1. Parallel computing platforms used to test PZLAHQR.

Processor Mflops/s Processors Number Peak
Machine Location Speed MHz per proc. Per node Nodes Gflops/s

SGI Origin 2000 ERDC 195 390 2 64 49.9
IBM SP2 ERDC 135 540 1 255 137.7
IBM Power3 SMP ERDC 222 888 8a 64 454.6
IBM Power4 ORNL 1300 5200 32 27 4492.8

aWhen the original timings experiments were conducted, a maximum of four MPI processes could
be used per node.

All routines are implemented in Fortran 77, except for PZROT, which is coded in C.
For the tests at ERDC MSRC, all the routines were compiled using optimization
flags -O3, -O3 -qarch=pwr2 -qtune=pwr2 -qmaxmem=-1, and -O3 -qarch=pwr3

-qtune=pwr3 -qmaxmem=-1 for the SGI Origin 2000, the IBM SP2, and the IBM
Power3 SMP, respectively. For the tests at ORNL, all the routines were compiled
using optimization flags -O4 -qnoipa -qmaxmem=-1. For runs on all IBM machines,

8 · M. Fahey

the environment variable MP SHARED MEMORY was set to YES. All tests were run
during normal operation hours in a non-dedicated environment.

5.1 Accuracy of PZLAHQR

The testing (and timing) results were performed using a modified version of the
ScaLAPACK testing software for PDLAHQR to call PZLAHQR instead. The testing
routine tests a randomly generated complex Hessenberg matrix over multiple pro-
cessor grids and over multiple block sizes.1

The test code checks

|A − UTUH |

|A|nε
< TOL (2)

and

|I − UUH |

nε
< TOL (3)

for all combinations of matrix sizes, processor grids, and block sizes. As an example
of the tests conducted, the following shows one example input file to the test code.

Input deck:

’SCALAPACK NEP (Nonsymmetric Eigenvalue Problem) input file’

’MPI machine’

’NEP.out’ output file name (if any)

6 device out

5 number of problems sizes

1 6 10 50 250 Problem sizes

3 number of block sizes

6 8 17 values of block sizes

4 number of process grids (ordered pairs of P & Q)

1 2 1 4 values of P

1 2 3 1 values of Q

20.0 threshold

For the above input set and for all runs in the following sections where timings
are presented, PZLAHQR passed the residual tests (2) and (3) where the tolerance
was 20. Please consult the ScaLAPACK Installation Guide [Choi et al. 1995] for
more information on input files for ScaLAPACK test routines.

5.2 Fixed Problem Size Scalability of PZLAHQR

All timing results are for the computation of the standard Schur form of a Hessen-
berg matrix with random entries. A two dimensional block-cyclic data decomposi-
tion was used with a blocking factor of 100. Only square processor grids were used,
but this is not a requirement. Any type of rectangular processor grid may be used.
Note that the amount of data is O(N 2), and the run-time on a single processor is
O(N3).

1See ScaLAPACK installation guide [Choi et al. 1995].

A Parallel Eigenvalue Routine for Complex Hessenberg Matrices · 9

In Tables 2, 3, and 4 the execution time in seconds for computing the complete
Schur decomposition on an SGI Origin 2000, an IBM Power3 SMP, and an IBM
SP2, respectively, is reported. The first line in the tables reports the timings for
ZHSEQR from the LAPACK library. ZHSEQR is the sequential multiple single-shift
QR algorithm for complex Hessenberg matrices. The remaining lines show the
timings for PZLAHQR for various square processor grids.

Table 2. Execution time in seconds to compute a complex Schur decomposition on an SGI Origin
2000.

Execution time in seconds - SGI Origin 2000

Proc. grid Matrix Order
mp × np 500 1000 1500 2000 2500 3000

1 64 521 1740
1 × 1 66 552 1849
2 × 2 23 155 568 1229 2417 4097
3 × 3 16 91 287 707 1278 2312
4 × 4 14 60 180 383 793 1123

Table 3. Execution time in seconds to compute a complex Schur decomposition on an IBM
Power3 SMP.

Execution time in seconds - IBM Power3 SMP

Proc. grid Matrix Order
mp × np 500 1000 1500 2000 2500 3000

1 40 321 1108 2568
1 × 1 39 318 1106 2577
2 × 2 14 106 340 764 1574 2514
3 × 3 9 58 198 428 813 1399
4 × 4 8 36 106 238 436 700

Table 4. Execution time in seconds to compute a complex Schur decomposition on an IBM SP2.

Execution time in seconds - IBM SP2

Proc. grid Matrix Order
mp × np 500 1000 1500 2000 2500 3000

1 54 670 1500 3514
1 × 1 54 448 1502 3471
2 × 2 21 154 521 1387 2546 4279
3 × 3 13 83 269 632 1417 1957
4 × 4 12 52 154 339 862 1088

The results in Tables 2, 3, and 4 show that for fixed N , PZLAHQR scales well as
the number of processors increases. This is based on the observation that PZLAHQR
yields timings comparable to ZHSEQR for the one process tests, and as the number
of processes increases, the timings for PZLAHQR reduce in nearly linear fashion.

10 · M. Fahey

In addition, there are some timings that are missing from the tables for sequential
runs. The missing data are due to memory limitations. The code written to test
PZLAHQR creates one large array for which all matrix and vector storage is used.
For the sequential cases, this array must be so large that it would require 64-bit
addressing to access the entire array. The Basic Linear Algebra Communication
Subprograms (BLACS) are built with MPI as the underlying communication inter-
face on the machines tested. At the time these tests were conduction, only the SGI
Origin 2000 supported 64-bit compilation of MPI programs.

5.3 Scaled Problem Size Scalability of PZLAHQR

Next, the scalability of PZLAHQR is further investigated by calculating speedup and
efficiency ratings based on the computed aggregate megaflop rate as the problem
size and the number of processors increase. Assume that the flop count to compute
the Schur decomposition is 18N3, where N is the order of the matrix [Blackford
et al. 1997].

Let efficiency with respect to megaflop rate be defined as

EF =
Mp

PMs

where Mp is the megaflop rate on P processors and Ms is the serial megaflop rate.
The speedup with respect to megaflop rate

SF = PEF

is the factor by which execution time is reduced on P processors.
In Table 5, the time in seconds to compute the Schur decomposition for increasing

larger problems and larger processor grids is shown. Notice that the efficiency

Table 5. Speedups and efficiencies based on the megaflop rate.
Proc. grid IBM Power3 IBM Power4
mp × np N Time Mflops/s SF EF Time Mflops/s SF EF

1 × 1 2000 2577 56 1.0 1.00 842 171 1.0 1.00
2 × 2 4000 5975 193 3.5 0.86 1860 619 3.6 0.90

3 × 3 6000 13550 287 5.1 0.57 2465 1577 9.2 1.02
4 × 4 8000 12526 736 13.2 0.82 4282 2152 12.6 0.79
5 × 5 10000 23712 759 13.6 0.54 5389 3340 19.5 0.78
6 × 6 12000 18078 1720 30.8 0.85 5350 5814 34.0 0.94
8 × 8 16000 24471 3013 53.9 0.84 9014 8179 47.8 0.75

ratings are much higher for the processor grids that are evenly divisible by four in
Table 5. In fact, the megaflop rate per processor for the processor grids divisible
by four stays approximately constant around 47.

At the time the tests were conductioned, the IBM Power3 SMP had a limit of
4 MPI processes per node. The balancing of MPI processes for process grids not
divisible by 4 was an issue. For example, with a 3 × 3 processor grid, an efficiency
of 0.73 is obtained if the machine is set to use three MPI processes on three nodes
instead of a four-four-one setup on three nodes that had an efficiency of 0.57 (as

A Parallel Eigenvalue Routine for Complex Hessenberg Matrices · 11

shown in Table 5). Thus, the variable efficiencies are a by-product of the hardware,
not the code.

The data in Table 5 are also displayed in Figure 3 and clearly show linear scal-
ability. The exception is processor grids not divisible by four on the IBM Power3.

2000 4000 6000 8000 10000 12000 14000 16000
0

0.5

1

1.5

2

2.5
x 10

4

Matrix Order

T
im

e
 i
n
 s

e
c
o
n
d
s

(a) Scaling plot of Parallel Schur decomposition

1x1
2x2

3x3

4x4

5x5 6x6

7x7

8x8

1x1

2x2

3x3
4x4

5x5

6x6

8x8

IBM Power4
IBM Power3

2000 4000 6000 8000 10000 12000 14000 16000
20

40

60

80

100

120

140

160

180

Matrix Order

M
F

lo
p
s
 p

e
r

p
ro

c
e
s
s
o
r

(b) MFlops per processor for Parallel Schur decomposition

1x1

2x2

3x3

4x4 5x5

6x6

7x7

8x8

1x1

2x2

3x3

4x4

5x5

6x6 8x8

IBM Power4
IBM Power3

Fig. 3. Schur decomposition of a complex Hessenberg matrix using PZLAHQR using increasing
larger square processor grids as the order of the matrix increases. (a) Time in seconds to compute
Schur decomposition. (b) MFlops/s per processor.

6. CONCLUDING REMARKS

A parallel complex Schur decomposition routine PZLAHQR has been implemented
based on the ScaLAPACK code PDLAHQR. Results were shown for PZLAHQR and
showed that this routine scales nicely with the number of processors. Several auxil-
iary subroutines were developed to support this routine that will be useful outside
the scope of PZLAHQR.

These codes have been added to the ScaLAPACK library starting with release
1.7. An updated version is in progress.

ACKNOWLEDGMENTS

The author thanks Greg Henry for his advice early in this project. The author also
thanks Dan Duffy, William Ward, and the referees for their comments.

Parallel runs were done on the SGI Origin 2000, IBM SP2, and IBM Power3
SMP at the U.S. Army Engineer Research and Development Center (ERDC) Major
Shared Resource Center (MSRC) and the IBM Power 4 at Oak Ridge National Lab
(ORNL).

This research was supported by the U.S. Department of Energy, Office of Basic
Energy Sciences at Oak Ridge National Laboratory; managed for the U.S. DOE by
UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725. This work was also

12 · M. Fahey

supported in part by a grant of computer time from the DoD High Performance
Computing Modernization Program at the ERDC MSRC, Vicksburg, MS.

REFERENCES

Bai, Z. and Demmel, D. 1989. On a block implementation of Hessenberg multishift QR it-
eration. Int. J. High Speed Comput. 1, 97–112. Also Argonne National Laboratory Technical
Report ANL-MCS-TM-127, 1989.

Berry, M. W., Dongarra, J. J., and Kim, Y. 1994. A highly parallel algorithm for the
reduction of a nonsymmetric matrix to block upper-Hessenberg form. Computer Sciences
Dept. Technical Report CS-94-221 (Feb.), University of Tennessee, Knoxville, TN. LA-
PACK Working Note #68.

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-

garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and

Whaley, R. C. 1997. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA.

Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stan-

ley, K., Walker, D., and Whaley, R. C. 1995. Installation guide for ScaLAPACK.
Computer Sciences Dept. Technical Report CS-95-280 (March), University of Tennessee,
Knoxville, TN. LAPACK Working Note #93.

Dongarra, J. J. and Van de Geijn, R. 1992. Reduction to condensed form on distributed
memory architectures. Parallel Computing 18, 973–982.

Golub, G. H. and Van Loan, C. F. 1996. Matrix Computations (Third ed.). The Johns
Hopkins University Press, Baltimore, MD.

Henry, G., Watkins, D., and Dongarra, J. 1997. A parallel implementation of the non-
symmetric QR algorithm for distributed memory architectures. Computer Sciences Dept.
Technical Report CS-97-352 (March), University of Tennessee, Knoxville, TN. LAPACK
Working Note #121.

Lehoucq, R. 1994. The computation of elementary unitary matrices. Computer Sciences
Dept. Technical Report CS-94-233, University of Tennessee, Knoxville, TN. LAPACK
Working Note #72.

Watkins, D. S. 1991. Fundamentals of Matrix Computations. John Wiley and Sons, New
York, NY.

Watkins, D. S. 1994. Shifting strategies for the parallel QR algorithm. SIAM J. Sci. Com-

put. 15, 953–958.

Watkins, D. S. and Elsner, L. 1991. Convergence of algorithms of decomposition type
for the eigenvalue problem. Lin. Alg. Appl. 143, 19–47.

